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A paper by Meredith & Millsap (1985) presented a view of component

analysis in which the regression of observed on component variables

plays the central role. In this regression, the "adequacy" of a

component representati(. is measured by the amount of error in the

least-squares approximation of observed by component variables. Let X be

an nxi vector of observed random variables, with e(X)=0 and e(XX .
)=E.

To simplify discussion, we assume rank(En. Let Z=W X be an mxl

vector of component random variables, with W an nxm compositing weight

matrix to be applied to the observed variables. The paper by Meredith &

Millsap (1985) demonstrated that using a weighted squared error loss

function, the optimal component solution is given by the matrix W which

maximizes the function
,

Fat E, G) = tr fW zrinvoy Ew)-...,} . (1)

The matrix G is an nxn nonsingular matrix that can be used to

differentially weight the elements of X in deriving the components.

Weighted component analysis is discussed in Mulaik (1972). Meredith &

Millsap (1985) gi, an extensive discussion of possibilities for

weighting.

Note that the value of (1) cannot exceed tr(GE). A natural

measure for the adequacy of a component solution is the ratio of (1) to

tr(GE). This ratio will be unity if m=n, and will approach unity

for m<n as the component solution accounts for a greater share of the

observed variance.

Component Analysis under Linear Constraints

Before introducing linear constraints in the component analysis, it

will be useful to rewrite (1) in a slightly more general form
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H(17;A,B) = trWAU(17/317)-1) ( 2)

with A and B both qxq matrices of rank q, and 17 a qxs matrix. Clearly,

(1) is the special case of (2) in which q=n, s=m, A=113E, and B=E.

A solution for 17 which maximizes H(II; A, B) is found as follows.

Factor B =LL' and let A*=L-1AL-1, 17*=C17. Then

H(17; A, B) = HM4; A*, I) = tr fir' leir`(17*/13*) -11 (3)

Let the spectral representation of A*=0AC).1 A theorem by

Bel]man (1960) gives the matrix D* which maximizes (3) as 17*=OinT,

where 010 is an nxm matrix whose columns Ire the m eigenvectors

corresponding to the m largest eigenvalues of A*, and T is any mxm

nonsingular matrix. The solution identifies a class of matrices 17*,

and we must choose a matrix T to identify a member of this class.
.In terms of the function F(W;E, G), let ETLL, W*L:L W, and

A*=L-1113EL1. If the spectral representation of A*=0AQ,'

the solution for W*=CknT and W=L-1%T. We typically choose T to be

an identity matrix or a diagonal matrix of the reciprocal square roots

of the first in eigenvalues.

To introduce the constrained solution to (2), consider

concatenating the columns of II=Eui, u2, ..., us] to form a
. . . .column vector V such that V =Cul, u2, ..., u33. We want to

find a matrix 17 which maximizes (2) under the constraints
.

C V * M (4)

with C a qsxr nonsingular matrix and H an rxi vector. Some or all of

the r constraints in (4) may be taken as equalities, but the number of

equality constraints may not exceed qs. The constraints in (4) can be

used to fix elements of IT to selected values, to equate elements of tr,
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to set lower or upper bounds on the elements of U, or to fix linear

composites of the elements of U to selected valus. We can employ some

of the constraints in (4) for purposes of identifying U. For this

purpose, s2 equality constraints are sufficient.

Structure and Pattern Matrices

We began with a description of component analysis that focused on

the compositing matrix W. Given a solution for W, we can define the

component pattern matrix P=EN(Willi1)-1 and the component structure

matrix R=EW. Note that we can write the function H in terms of W,

P, or R

H(W; 33E, E) = tr fW103111/(Wilit0 -1} (5)

H(1); G, E-1) = tr fP1GP(PIE-1P) -1} (6)

H(R; G, E-1) = tr fRial(R1E-1R) -1} Cr)

Clearly, constriants of the form in (4) can be applied to either (6) or

(7) as well as (5). In other words, we can derive components whose

pattern or structure matrices conform to specified constraints.

Extrema of the Function

The unconstrained function H(U;A,B) is continuous and has (1:1)

stationary points, wit'i both a unique global maximum and a unique global

minimum, assuming distinct eigenvalues for the matrix A*. In

practice therefore, H(U;A,B) is bounded. If we impose m2 equality

constraints in (4) to identify U, the matrices U which satisfy these

constraints constitute a closed, bounded convex set. Hence there must

exist both a global maximum and a global minimum for H over this set.

The addition of further equality or inequality constraints will not

alter the existence of a global maximum, but the maximum may no longer
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be unique. In general, if additional constraints are imposed, the

maximum value for H achieved under these constraints will he less than

that under the "just identified" solution.

The Adequacy of the Constrained Solution

We can evaluate the adequacy of the constrained component solution

in at least two ways. An "absolute" measure of adequacy can be

calculated by replacing the solution for W, P, or R in (5), (6), or (7)

respectively. Then either (5), (6), or (7) can be divided by trfCiE).

This ratio measures the variance "accounted for" by the constrained

solution against the total variance observed. Alternatively, we could

calulate a "relative" measure of adequacy by dividing the value of H

under the constrained solution by the value of H under a "just
identified" solution. Here we are measuring tae variance accounted for

by the constrained solution against the variance accounted for by the

"just identified" solution. If this ratio is near unity, we can be

confident in using the constrained solution in place of the principal

component solution.

Final Remarks

The constrained component analysis method presented here bears a

formal resemblance to the confirmatory factor analysis methods developed

by Joreskog (1969) and others. In confirmatory factor analysis, the

constraints allow us to formally test structural hypotheses within a

model that is falsifiable, even in its "just identified" form. In

component analysis, the goal is to determine whether a component

solution that is restricted in various ways can still account for an

adequate share of the variance in the observed data. We may also be
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concerned with the consistency and efficiency of the estimates under the

constrained analysis. But no statistical tests of fit of the component

"model" are contemplated. In this sense, the method presented here is
to

closer to the work in constrained canonical correlation by DeSarbo,

Hausman, Lin, & Thompson (1982) than to confirmatory factor analysis.

Interesting applications of constrained component analysis exist in

data that is longitudinal or cross-sectional in nature. In these cases,

the natural constraints may involve stationarity or invariance of the

compositing weight, component pattern, or component structure matrices.

In data measured at a single occasion in a single population,

constraints might be used to impose simple structure or achieve a

sensible variable clustering. Boundary constraints might be used to

achieve a positive manifold.
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